

Chemical Characterisation of Polar Organic Compounds in Ambient Aerosols by High Resolution Mass Spectrometry: A Non Target Approach

Christian Dye and Karl Espen Yttri

Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway - www.nilu.no

Summary

In this work a High Performance Liquid Chromatograph (HPLC) was combined with a Time of Flight (TOF) high-resolution mass spectrometer (HRMS) and used as a tool in non-target chemical analysis of polar organic compounds in ambient aerosols. The experiments indicate that the complementary use of flow injection analysis FIA combined with HRMS (TOF), HPLC/HRMS(TOF) and HPLC/UV provides an efficient non target approach. The FIA/HRMS reveals a variety of classes of polar organic compounds.

Introduction

Why characterize ambient aerosols?

- The chemical composition of atmospheric aerosols influences the ability to act as a cloud condensation nucleus (CCN). The polar water-soluble organic compounds (WSOC) are of special importance regarding the CCN properties.
- The atmospheric aerosols may contain chemical compounds that have severe health effects.

Challenge

- Ambient aerosols contain a mixture of hundreds of organic compounds. A large fraction is still unidentified compounds. Therefore, an efficient non-target approach is needed.
- The aerosol sample contains a mixture of acids, bases, neutrals and salts.

Methodology

Strategy

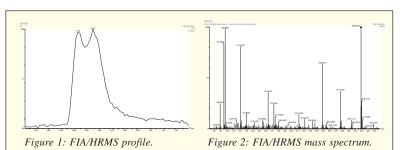
- 1. FIA/HRMS provides a qualitative sample screening. This technique has a high sample throughput. Outcome example: See table 1.
- Chemical class determination/ Isotope determination by use of model compounds, HPLC/HRMS and HPLC/UV. Combination of elemental composition, isotopic pattern, retention times and UV spectra.
- 3. Quantitative chemical analysis by HPLC/HRMS.

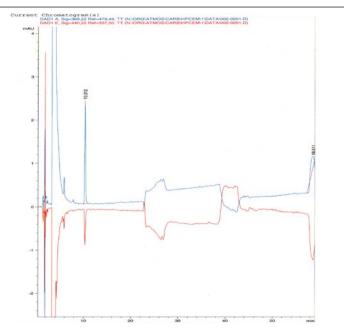
Instrumentation

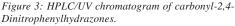
- HP1100 HPLC equipped with diode array detector.
- Micromass LCT (Time-Of-Flight) HRMS.

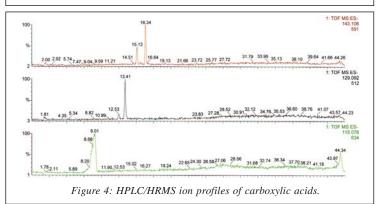
Sample preparation

- 1. The aerosol samples are collected by exposing quartz fibre filters (47 mm diameter and a flow rate of 10 l/min).
- 2. The filters are extracted by immersing the filter in water and subsequent an ultrasonic bath.
- 3. The sample extract is drawn through a syringe filter (0.45 um) before injection.


Results


Table 1: Selected outcome of a FIA/HRMS (Negative electrospray ionisation) analysis of a PM_{22} filter sample from Sofienbergparken in Oslo (November 2001)


Measured	Suggested elemental	Theoretical	Possible interpretation
m/ z (M-H)	composition (M-H)	m/z (M-H)	
89.0237	C ₃ H ₅ O _{3 (M-H)}		
	or C ₆ H ₁₀ O _{6 (M-2H)}	89.0239	Glucose/Fructose
115.0779	$C_{6}H_{11}O_{2}$	115.0756	Carboxylic acids/esters/
			Hydroxy carbonyls
121.0297	C ₇ H ₅ O ₂	121.0290	Benzoic acid, hydroxy
			benzaldehyde
129.0965	C ₇ H ₁₃ O ₂	129.0912	Carboxylic acids/ esters/
			Hydroxy carbonyls
130.0872	C ₆ H ₁₂ NO ₂	130.0868	Leucine or aminobutyric acid
	0 12 2		or an isomer.
131.0361	C ₅ H ₇ O ₄	131.0342	Hydroxyketoacid/unsaturated
	5 7 1		diacid
143.1053	C ₈ H ₁₅ O ₂	143.1068	Carboxylic acids/ esters/
	0 10 2		Hydroxy carbonyls
145.0501	C ₆ H ₉ O ₄	145.0498	Diacid
159.0600	C ₇ H ₁₁ O ₄	159.0654	Hydroxyketoacid/unsaturated
			diacid
161.0447	C ₆ H ₉ O ₅	161.0450	Levoglucosan (MAs),
			Hydroxy diacid
164.0712	C ₉ H ₁₀ NO ₂	164.0712	Phenylalanine or an isomer.
199.1647	C ₁₂ H ₂₃ O ₂	199.1692	Carboxylic acids/ esters/
	12 20 2		Hydroxy carbonyls
255.2388	C ₁₆ H ₃₁ O ₂	255.2316	Carboxylic acidsr/ esters/
			Hydroxy carbonyls
277.1529	C ₁₅ H ₂₁ N ₂ O ₃	277.1552	Tolycaine
341.0961	$C_{12}H_{21}O_{11}$	341.1084	Sucrose


Acknowledgment

This work was supported by VISTA (The Norwegian Academy of Science and Letters and Statoil) and the Norwegian Institute for Air Research.

Example of Chemical Class Determination

- The measured m/z 129.0965 indicates Carboxylic acids/ esters/ Hydroxy carbonyls.
- The sample is derivatised with acidified 2,4-Dinitrophenylhydrazine in order to analyse with respect to hydroxy carbonyl compounds. No hydroxy carbonyl compound was found in the sample with HPLC/UV (Figure 3).
- The sample is analysed with respect to organic acids by using HPLC/HRMS. Two isomers of organic C₇ carboxylic acid are identified (figure 4, retention time 12.53 and 13.41).

Conclusions

- The experiments show that the complementary use of flow injection analysis FIA combined with HRMS (TOF), HPLC/HRMS (TOF) and HPLC/UV provides an efficient non-target approach.
- The non-target approach has been tested with success in electrospray ionisation +/- mode and in Atmospheric Pressure Chemical Ionisation +/- mode.
- FIA/HRMS should not be used for quantification due to matrix dependent ionistion yield of the single compound.
- The non-target approach has been useful in sample screening of WSOC compounds as monosaccharide anhydrides and sugars.