

Toxicological studies of PFOA (Perfluorooctanoic acid) and 8:2 FTOH (1H, 1H, 2H, 2H-Perfluorodecanol)

Nilsen A-J¹, Osmundsen H³, Berger U², Fonnum F¹

¹Norwegian Defence Research Establishment (FFI) Kjeller, Norway ²Norwegian Institute for Air Research (NILU), Tromsø, Norway ³Oral Biologi, University of Oslo

INTRODUCTION

- Fluorinated organic compounds have been manufactured for more than 50 years. They are employed in the production of fire-fighting foams, herbicides and insecticides, lubricants, paints, adhesives and acid etching solutions (Jackson, Laikhtman et al. 1999; Kannan, Franson et al. 2001)
- These compounds have recently gained much attention because of their high stability and wide distribution in the environment.

MATERIALS AND METHODS

- Male HanTac:WH rats (300g) were exposed to 25mg/kg body wt of PFOA or of 8:2 FTOH per oralt for ten successive days.
- Peroxisomal β-oxidation (Osmundsen, Braud et al. 1998) and liver carboxylesterase was measured (Sterri, Johnsen et al. 1985)
- Catalase was assayed as disappearence of H₂O₂ at 240nm.
- Changes in gene-expression were monitored by using 7K Rat micro-arrays from the microarray core facility at NTNU Trondheim (7K-S1-62-65).

RESULTS

Chemical analysis in liver after PFOA and FTOH treatment

Table 1: Each value is mean from six animals. (* p<0.05, Anova, Dunnet`s test).

	PFOA analyses ug/g liver- tissue	Changes in body- weight(g)	Liver- weight(g)	Liver- weight % of body- weight(g)
Control	0,5	26,3	11,6	3,7
PFOA	50	8,3*	15,8*	5,5*
FTOH	5	21,8	15,9*	5,0*

Carboxylesterase

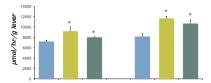
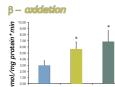
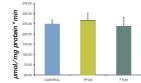
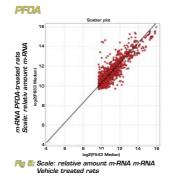



Fig 1: Liver carboxylesterase activity was measured spectrophotometrically. The substrates, 4nitrofenylacetat (4-NFA) (0.6M) and 4-nitrofenylbutyrat (4-NFB) (0.15M), were converted to 4-nitrofenol which was measured at 400 nm. Each value is shown as mean + SEM from six animals. The results show that the carboxylesterase-activity is significantly higher compared to control with 4-NFA and 4-NFB, for both PF0A and FT0H treated animals (* p-0.05, Anova, Dunnet's test).

Real 2: Peroxisomal β-oxidation was measured spectrophotometrically at 340 mm as rates of palmitoyl-CoAdependent reduction of NAD+. Each value is mean + 5D from six animals. The results show a significant increase in peroxisomal β-oxidation after treatment with PFOA and FTOH (†p<0.01, Anova, Dunnet's test).

Catalase




Fig 3: Catalase activity was assayed as disappearence of H₂O₂ at 240nm. Each value is mean + 5D from six animals. The results show that the catalase activity was not significantly changed in the PFOA or FTOH treated animals.

Microarray

Microarray was used to monitor levels of m-RNA in rat liver. m-RNA from vehicle treated rats was labelled with Cy3 (F 543-green color), m-RNA from rats treated with PFOA/FTOH was labelled with Cy5 (F633-red color). Mixture of Cy3 and Cy5 results in yellow spots. All together 7000 genes were examined.

Fig.4: Microarray slide, show differentially expressed genes

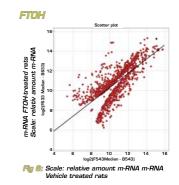


Fig 5 and Fig 8:

Scatterplots are shown as log₂ plots of the two channel intensities, log2 633 versus log2 543. Spots that fail on the 45' diagonal represent those m-RNAs whose abundances are equal for the vehicle rats and the PF0A/FT0H treated rats. Spots away from the diagonal represent differential expressed genes

Table 3

Tables 2-5: Indicating different groups of genes expressed as ratio PFOA/Control, FTOH/Control

Table 2

Mitochondrial and peroxixomal genes	PFOA	FTOH	
2 4-dianoxi CoA reductase 1 mitochondria	7.9	7,6	
Acety-Co A acetytransferase 1 mitochondria	4,4	6.2	
Carritine palmitovitransferase 1	2.4	2.9	
Dodecencyl-coenzyme A deta isomerase	11,5	9,3	
Inovi coenzyme A hydratase 1	2.6	2.9	
Acety-Co A acetytransferase 1 mitochondrial	4.4	6.2	
Acyl Coenzyme A dehydrogenase long chain	3,6	3,0	
Stearov-Coenzyme A desaturase 1	6.8	5.6	
Serine-ovruvate aminotransferase	2.5	2.6	
Acyl-coA oxidase	10,8	13,0	
EncyHCoenzyme A hydrataea/O-hydroxyacyl Coenzyme A Dehydrogenase	15,3	14,8	
Dodecentryl-coenzyme A detta isomerase	11.5	9.3	
Cytosolic acy+CoA thioesterase 1	21.6	29.4	
Stearovi-Coenzyme A desaturase 1	6.8	5.6	
Catalase	1.3	1,2	

Xenometabolism genes	PFOA	FTOH	
Cytochnome P450 subfamily IVB polypeptide 1 Cytochnome P450 subfamily IVB polypeptide 3 Cytochnome P450 subfamily 24 (deman-Linduchka) Rad Cytola locus encoding cytochnome P450 (IVA3) mRNA complete cds UDP glucosytimantenses 1 family polypeptide A7 UDP glucosytimantenses for anny polypeptide A7 UDP glucosytimantenses for anny polypeptide A7			25,0 5,2 2,1 6,1 3,7 2,7 0,5
Table 4	-		
Acute phase genes	PFOA	1	тон
Sulfotransferase hyroxysteroid gene 2 Heat shock 70 kD protein 5 Serum amyloid P-component Transthyrotin	0,2 1,6 0,6 0,7	0,0 0,3 0,3 0,4	
Table 5			
Various genes	PFO/		тон
Cd36 antigen Metallothionein Aldehyd Dehydrogenase 1 subfamily A1 Alcohol dehydrogenase (class 1)	10,5 9,2 2,5		0,1 10,5 1,5

CONCLUSION

The results show that exposure to 25 mg/kg PFOA or FTOH per oralt for ten successive days leads to increased liver weight and changes in gene-expression in rats. Gene-expression of m-RNA in liver was 2 to 30-fold increased for more than 50 genes (some of the genes with increased or decreased expression are shown in table 2-5). As an example β -oxidation was increased 2-3 fold (and m-RNA also increased 2-30 fold), whereas no change was observed for catalase, (m-RNA increased 1,2-1,3 fold)

Refere