Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 8644 publikasjoner. Viser side 1 av 346:

Publikasjon  
År  
Kategori

Årsrapport 2019

Solbakken, Christine Forsetlund (eds.)

NILU

2019

Åpning av havområdene vest for delelinjen i Barentshavet Sør for petroleumsvirksomhet. Konsekvenser av regulære utslipp til luft. NILU OR

Solberg, S.; Svendby, T.; Gjerstad, K.I.; Liu, L.; Wathne, B.M.; Skjelkvåle, B.L.; Høgåsen, T.; Aarrestad, P.A.; Gjershaug, J.O.

Norsk institutt for luftforskning (NILU), Norsk institutt for vannforskning (NIVA) og Norsk institutt for naturforskning (NINA) har utredet virkninger på naturmiljøet av utslipp av NOx, SO2 og partikler til luft fra eventuell framtidig petroleumsaktivitet i Barentshavet. Det er beregnet avsetning av nitrogen, svovel og partikler - og det er beregnet dannelse av ozon. Videre er det vurdert hvilke effekter dette har for naturen. Beregningene tilsier at utslippene høyst sannsynlig ikke vil føre til negative effekter på vegetasjon og fauna i de terrestriske influensområdene.

2012

Åpning av havområdene ved Jan Mayen for petroleumsvirksomhet. Konsekvenser av regulære utslipp til luft. NILU OR

Solberg, S.; Svendby, T.; Gjerstad, K.I.; Liu, L.; Wathne, B.M.; Skjelkvåle, B.L.; Høgåsen, T.; Aarrestad, P.A.; Gjershaug, J.O.

Norsk institutt for luftforskning (NILU), Norsk institutt for vannforskning (NIVA) og Norsk institutt for naturforskning (NINA) har utredet virkninger på naturmiljøet av utslipp av NOx, SO2 og partikler til luft fra eventuell framtidig petroleumsaktivitet i havområdet ved Jan Mayen. Det er beregnet avsetning av nitrogen, svovel og partikler - og det er beregnet dannelse av ozon. Videre er det vurdert hvilke effekter dette har for naturen. Beregningene tilsier at utslippene høyst sannsynlig ikke vil føre til negative effekter på vegetasjon og fauna i de terrestriske influensområdene.

2012

Zurich statement on future actions on per-and polyfluoroalkyl substances (PFASs)

Ritscher, Amélie; Wang, Zhanyun; Scheringer, Martin; Boucher, Justin M.; Ahrens, Lutz; Berger, Urs; Bintein, Sylvain; Bopp, Stephanie K.; Borg, Daniel; Buser, Andreas M.; Cousins, Ian; DeWitt, Jamie; Fletcher, Tony; Green, Christopher; Herzke, Dorte; Higgins, Christopher; Huang, Jun; Hung, Hayley; Knepper, Thomas; Lau, Christopher S.; Leinala, Eeva; Lindstrom, Andrew B.; Liu, Jinxia; Miller, Mark; Ohno, Koichi; Perkola, Noora; Shi, Yali; Haug, Line Småstuen; Trier, Xenia; Valsecchi, Sara; van der Jagt, Katinka; Vierke, Lena

Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, –CnF2n–. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science–policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs.

2018

Zurich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs)

Wang, Z.; Ritscher, A.; Scheringer, M.; Boucher, J.; Ahrens, L.; Berger, U.; Bintein, S.; Bopp, S.; Borg, D.; Buser, A.; Cousins, Ian; DeWitt, J. C.; Fletcher, T; Green, C.; Herzke, Dorte; Higgins, C. P.; Huang, J.; Hung, H.; Knepper, T. P.; Lau, C.; Leinala, E.; Lindstrom, A.; Liu, J.; Miller, M.; Ohno, K.; Perkola, N.; Shi, Y; Haug, Line Småstuen; Trier, X.; Valsecchi, S.; van der Jagt, K.; Vierke, L.

2019

Zeppelinobservatoriet på Svalbard

Tørseth, Kjetil (intervjuobjekt); Andreassen, Rune Nordgård (journalist)

2019

Your Car Is Spewing Microplastics That Blow Around the World

Evangeliou, Nikolaos (intervjuobjekt); Simon, Matt (journalist)

2020

Year-Round In Situ Measurements of Arctic Low-Level Clouds: Microphysical Properties and Their Relationships With Aerosols

Koike, Makoto; Ukita, Jinro; Ström, Johan; Tunved, Peter; Shiobara, Masataka; Vitale, Vito; Lupi, Angelo; Baumgardner, D.; Ritter, Christoph; Hermansen, Ove; Yamada, K.; Pedersen, Christina Alsvik

Two years of continuous in situ measurements of Arctic low‐level clouds have been made at the Mount Zeppelin Observatory (78°56′N, 11°53′E), in Ny‐Ålesund, Spitsbergen. The monthly median value of the cloud particle number concentration (Nc) showed a clear seasonal variation: Its maximum appeared in May–July (65 ± 8 cm−3), and it remained low between October and March (8 ± 7 cm−3). At temperatures warmer than 0 °C, a clear correlation was found between the hourly Nc values and the number concentrations of aerosols with dry diameters larger than 70 nm (N70), which are proxies for cloud condensation nuclei (CCN). When clouds were detected at temperatures colder than 0 °C, some of the data followed the summertime Nc to N70 relationship, while other data showed systematically lower Nc values. The lidar‐derived depolarization ratios suggested that the former (CCN‐controlled) and latter (CCN‐uncontrolled) data generally corresponded to clouds consisting of supercooled water droplets and those containing ice particles, respectively. The CCN‐controlled data persistently appeared throughout the year at Zeppelin. The aerosol‐cloud interaction index (ACI = dlnNc/(3dlnN70)) for the CCN‐controlled data showed high sensitivities to aerosols both in the summer (clean air) and winter–spring (Arctic haze) seasons (0.22 ± 0.03 and 0.25 ± 0.02, respectively). The air parcel model calculations generally reproduced these values. The threshold diameters of aerosol activation (Dact), which account for the Nc of the CCN‐controlled data, were as low as 30–50 nm when N70 was less than 30 cm−3, suggesting that new particle formation can affect Arctic cloud microphysics.

American Geophysical Union (AGU)

2019

Überarbeitung der Schwermetallkapitel im CORINAIR Guidebook zur Verbesserung der Emissionsinventare und der Berichterstattung im Rahmen der Genfer Luftreinhaltekonvention. UFOPLAN 312 01 234

Theloke, J.; Kummer, U.; Nitter, S.; Geftler, T.; Friedrich, R.; Pacyna, J.; Denier van der Gon, H.

2008

WP3 Data Management. Powerpoint presentation. NILU F

Vik, A.F.; Krognes, T.; Walker, S.E.; Bårde, T.; Paltiel, R.

2005

Publikasjon
År
Kategori