Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9234 publikasjoner. Viser side 343 av 370:

Publikasjon  
År  
Kategori

An Approach to Assess the Biological Effects of Semi-Volatile Organic Chemicals in Indoor Air

Halse, Anne Karine; Longhin, Eleonora Marta; Bohlin-Nizzetto, Pernilla; Mariussen, Espen; Borgen, Anders; Warner, Nicholas Alexander

2023

An Antarctic research station as a source of brominated and perfluorinated persistent organic pollutants to the local environment.

Wild, S.; McLagan, D.; Schlabach, M.; Bossi, R.; Hawker, D.; Cropp, R.; King, C.K.; Stark, J.S.; Mondon, J.; Nash, S.B.

2015

An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons.

Stohl, A.; Seibert, P.; Arduini, J.; Eckhardt, S.; Fraser, P.; Greally, B.R.; Lunder, C.; Maione, M.; Muhle, J.; O'Doherty, S.; Prinn, R.G.; Reimann, S.; Saito, T.; Schmidbauer, N.; Simmonds, P.G.; Vollmer, M.K.; Weiss, R.F.; Yokouchi, Y.

2009

An aerosol particle containing enriched uranium encountered in the remote upper troposphere

Murphy, D. M.; Froyd, K. D.; Apel, E.; Blake, D.; Evangeliou, Nikolaos; Hornbrook, R. S.; Peischl, J.; Ray, E.; Ryerson, T. B.; Thompson, C.; Stohl, Andreas

Elsevier

2018

An Advanced In vitro Respiratory Model for Genotoxicity Testing at the Air-Liquid Interface

Rundén-Pran, Elise; Mariussen, Espen; Elje, Elisabeth; Chary, A.; Longhin, Eleonora Marta; El Yamani, Naouale; Dusinska, Maria; Gutleb, AC; Serchi, T

Elsevier

2021

An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry

Koelmel, Jeremy P.; Xie, Hongyu; Price, Elliott J.; Lin, Elizabeth; Manz, Katherine E.; Stelben, Paul J.; Paige, Matthew K.; Papazian, Stefano; Okeme, Joseph; Jones, Dean P.; Barupal, Dinesh Kumar; Bowden, John; Rostkowski, Pawel Marian; Pennell, Kurt D.; Nikiforov, Vladimir; Wang, Thanh; Hu, Xin; Lai, Yunjia; Miller, Gary W.; Walker, Douglas; Martin, Jonathan W.; Pollitt, Krystal J. Godri

Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.

Oxford University Press

2022

Ammonia.

Lövblad, G.; Tarrasón, L.; Tørseth, K.

2004

Amine emissions to air during CO2-capture: CO2 and amines screening study for effects to the environment. NILU PP

Knudsen, S.; Karl, M.; Randall, S.; Dye, C.; Nielsen, C.J.; Låg, M.; Aarrestad, P.A.; Wright, R.; Brooks, S.

2009

Amine based CO2 capture at Melkøya. Modelling of nitrosamines and nitramines.

Tønnesen, Dag; Svendby, Tove Marit; Weydahl, Torleif

NILU

2019

Ambulatory air quality monitoring in free-living populations: the CITI-SENSE Barcelona pilot case study.

Cole-Hunter, T.; Donaire, D.; Kubesch, N.; Martínez, D.; Weichenthal, S.; Williams, M.; Saffel, J.; Nieuwenhuijsen, M.; Bartonova, A.; the CITI-SENSE Consortium.

2014

Ambient PM10 and PM2.5 measurements in Dakar, Senegal.

Guerreiro, C.B.; Laupsa, H.; Sivertsen, B.

2007

Ambient PM10 and PM2,5 measurements in Dakar, Senegal. NILU PP

Laupsa, H.; Guerreiro, C.B.; Sivertsen, B.

2007

Publikasjon
År
Kategori