Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2477 publikasjoner. Viser side 4 av 248:

Publikasjon  
År  
Kategori

Retrieval of Aerosol Optical Properties via an All-Sky Imager and Machine Learning: Uncertainty in Direct Normal Irradiance Estimations

Logothetis, Stavros-Andreas; Giannaklis, Christos-Panagiotis; Salamalikis, Vasileios; Tzoumanikas, Panagiotis; Raptis, Panagiotis-Ioannis; Amiridis, Vassilis; Eleftheratos, Kostas; Kazantzidis, Andreas

Quality-assured aerosol optical properties (AOP) with high spatiotemporal resolution are vital for the accurate estimation of direct aerosol radiative forcing and solar irradiance under clear skies. In this study, the sky information from an all-sky imager (ASI) is used with machine learning (ML) synergy to estimate aerosol optical depth (AOD) and the Ångström Exponent (AE). The retrieved AODs (AE) revealed good accuracy, with a dispersion error lower than 0.07 (0.15). The retrieved ML AOPs are used to estimate the DNI by applying radiative transfer modeling. The estimated ML DNI calculations revealed adequate accuracy to reproduce reference measurements with relatively low uncertainties.

2023

PM2.5 Retrieval Using Aerosol Optical Depth, Meteorological Variables, and Artificial Intelligence

Logothetis, Stavros-Andreas; Kosmopoulos, Georgios; Salamalikis, Vasileios; Kazantzidis, Andreas

Particulate matter (PM) is one of the major air pollutants that has adverse impacts on human health. The aim of this study is to present an alternative approach for retrieving fine PM (particles with an aerodynamic diameter less than 2.5 μm, PM2.5) using artificial intelligence. Ground-based instruments, including a hand-held Microtops II sun photometer (for aerosol optical depth), a PurpleAir sensor (for PM2.5), and Rotronic sensors (for temperature and relative humidity), are used for the machine learning algorithm training. The retrieved PM2.5 reveals an adequate performance with an error of 0.08 μg m−3 and a Pearson correlation coefficient of 0.84.

2023

Impact of Aerosol Optical Properties, Precipitable Water, and Solar Geometry on Sky Radiances Using Radiative Transfer Modeling

Giannaklis, Christos-Panagiotis; Logothetis, Stavros-Andreas; Salamalikis, Vasileios; Tzoumanikas, Panagiotis; Kazantzidis, Andreas

Radiative transfer modeling is used to investigate the effect of aerosol optical properties and water vapor on cloud-free sky radiances at various atmospheric conditions. Simulations are generated by changing the most critical aerosol optical properties, namely aerosol optical depth, Ångström exponent, the single-scattering albedo, the precipitable water, and the solar zenith angle (SZA) in three different spectral ranges: ultraviolet A, visible, and near-infrared.

2023

Simulations of Sky Radiances in Red and Blue Channels at Various Aerosol Conditions Using Radiative Transfer Modeling

Giannaklis, Christos-Panagiotis; Logothetis, Stavros-Andreas; Salamalikis, Vasileios; Tzoumanikas, Panagiotis; Katsidimas, Konstantinos; Kazantzidis, Andreas

We conducted a theoretical analysis of the relationship between red-to-blue (RBR) color intensities and aerosol optical properties. RBR values are obtained by radiative transfer simulations of diffuse sky radiances. Changes in atmospheric aerosol concentration (parametrized by aerosol optical depth, AOD), particle’s size distribution (parametrized by Ångström exponent, AE) and aerosols’ scattering (parametrized by single scattering albedo—SSA) lead to variability in sky radiances and, thus, affect the RBR ratio. RBR is highly sensitive to AOD as high aerosol load in the atmosphere causes high RBR. AE seems to strongly affect the RBR, while SSA effect the RBR, but not to such a great extent.

2023

Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling

Tichý, Ondřej; Eckhardt, Sabine; Balkanski, Yves; Hauglustaine, Didier; Evangeliou, Nikolaos

Ammonia (NH3), a significant precursor of particulate matter, affects not only biodiversity, ecosystems, and soil acidification but also climate and human health. In addition, its concentrations are constantly rising due to increasing feeding needs and the large use of fertilization and animal farming. Despite the significance of ammonia, its emissions are associated with large uncertainties, while its atmospheric abundance is difficult to measure. Nowadays, satellite products can effectively measure ammonia with low uncertainty and a global coverage. Here, we use satellite observations of column ammonia in combination with an inversion algorithm to derive ammonia emissions with a high resolution over Europe for the period 2013–2020. Ammonia emissions peak in northern Europe due to agricultural application and livestock management, in western Europe (industrial activity), and over Spain (pig farming). Emissions have decreased by −26 % since 2013 (from 5431 Gg in 2013 to 3994 Gg in 2020), showing that the abatement strategies adopted by the European Union have been very efficient. The slight increase (+4.4 %) in 2015 is also reproduced here and is attributed to some European countries exceeding annual emission targets. Ammonia emissions are low in winter (286 Gg) and peak in summer (563 Gg) and are dominated by the temperature-dependent volatilization of ammonia from the soil. The largest emission decreases were observed in central and eastern Europe (−38 %) and in western Europe (−37 %), while smaller decreases were recorded in northern (−17 %) and southern Europe (−7.6 %). When complemented with ground observations, modelled concentrations using the posterior emissions showed improved statistics, also following the observed seasonal trends. The posterior emissions presented here also agree well with respective estimates reported in the literature and inferred from bottom-up and top-down methodologies. These results indicate that satellite measurements combined with inverse algorithms constitute a robust tool for emission estimates and can infer the evolution of ammonia emissions over large timescales.

2023

Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds

Motos, Ghislain; Freitas, Gabriel; Georgakaki, Paraskevi; Wieder, Jörg; Li, Guangyu; Aas, Wenche; Lunder, Chris Rene; Krejci, Radovan; Pasquier, Julie Thérèse; Henneberger, Jan; David, Robert Oscar; Ritter, Christoph; Mohr, Claudia; Zieger, Paul; Nenes, Athanasios

2023

Analysis of nitro- and oxy-PAH emissions from a pilot scale silicon process with flue gas recirculation

Arnesen, Kamilla; Andersen, Vegar; Jakovljevic, Katarina; Enge, Ellen Katrin; Gaertner, Heiko; Aarhaug, Thor Anders; Einarsrud, Kristian Etienne; Tranell, Maria Gabriella

Silicon alloys are produced by carbothermic reduction of quartz in a submerged arc furnace. This high-temperature pyrolytic process is a source of polycyclic aromatic hydrocarbons (PAHs), which are a group of aromatic organic molecules with known mutagenic and carcinogenic properties. In this study, the emission of oxy- and nitro-PAHs from a pilot-scale Si furnace, with varying process conditions such as oxygen level, flue gas recirculation (FGR), and off-gas flow, was investigated. Analysis shows the presence of both oxy- and nitro-PAH species in all experiments, believed to be formed from radical-induced substitution reactions initiated by SiO combustion and NOx formation. During Si production without FGR, the levels of oxy- and nitro-PAHs range between 1.1 and 4.4 μg Nm−3, independent of the flue gas flow rate. With increasing FGR (0–82.5%) and decreasing oxygen level (20.7–13.3%), the concentrations of both oxy- and nitro-PAHs increase to 36.6 and 65.9 μg Nm−3, respectively. When the levels of substituted PAHs increase, species such as 4-nitropyrene and 1,2-benzanthraquinone are in abundance compared to their parent PAHs. Experiments at lower flue gas flow (500 Nm3 h−1 versus 1000 Nm3 h−1) generally produce less substituted PAHs, as well as SiO2 particulate matter and NOx, where the latter two parameters have a 99% correlation in this study.

Royal Society of Chemistry (RSC)

2023

Equilibrium Climate after Spectral and Bolometric Irradiance Reduction in Grand Solar Minimum Simulations

Tartaglione, Nazario; Toniazzo, Thomas; Otterå, Odd Helge; Orsolini, Yvan Joseph Georges Emile G.

In this study, we use the Whole Atmosphere Community Climate Model, forced by present-day atmospheric composition and coupled to a Slab Ocean Model, to simulate the state of the climate under grand solar minimum forcing scenarios. Idealized experiments prescribe time-invariant solar irradiance reductions that are either uniform (percentage-wise) across the total solar radiation spectrum (TOTC) or spectrally localized in the ultraviolet (UV) band (SCUV). We compare the equilibrium condition of these experiments with the equilibrium condition of a control simulation, forced by perpetual solar maximum conditions. In SCUV, we observe large stratospheric cooling due to ozone reduction. In both the Northern Hemisphere (NH) and the Southern Hemisphere (SH), this is accompanied by a weakening of the polar night jet during the cold season. In TOTC, dynamically induced polar stratospheric cooling is observed in the transition seasons over the NH, without any ozone deficit. The global temperature cooling values, compared with the control climate, are 0.55±0.03 K in TOTC and 0.39±0.03 K in SCUV. The reductions in total meridional heat transport outside of the subtropics are similar in the two experiments, especially in the SH. Despite substantial differences in stratospheric forcing, similarities exist between the two experiments, such as cloudiness; meridional heating transport in the SH; and strong cooling in the NH during wintertime, although this cooling affects two different regions, namely, North America in TOTC and the Euro–Asian continent in SCUV.

MDPI

2023

The role of SVOCs in the initial film formation and soiling of unvarnished paintings

Grøntoft, Terje; Cutajar, Jan Dariusz

In recent years increased research efforts and environmental improvements have been directed towards the preventive conservation of the monumental, unvarnished oil paintings on canvas (1909–1916) by Edvard Munch (1863–1944) housed in the University of Oslo Aula. Surface soiling of the paintings has been a documented issue since their display, and the modern-day effect of air-borne particulates and gases on the painting surfaces remains hitherto undocumented. For the first time in the Aula, this study has measured the in-situ time-dependent mass deposit of air pollution onto vertical surfaces over the period of one year (2021–2022). Concomitant measurements of the concentrations of ozone (O3) and nitrogen dioxide (NO2) were also taken, to complement periodic data from 2020. The mass deposit was measured through incremental weight changes of Teflon membrane filters, and quartz filters for analysis of elemental/organic carbon (EC/OC), whilst the gaseous pollutants were measured using passive gas samplers. Indoor-to-outdoor ratios (I/O) for O3 were noted to be higher than those suggested by earlier data, whereas NO2 I/O ratios were found to be lower, indicating a stronger oxidising atmosphere in the Aula. Just over half of the deposited mass on the quartz filters was found to be OC, with no EC detected. Surprisingly, an overall decrease in the mass deposit from three to twelve months was measured on the Teflon membrane filters. It was hypothesised, based on models reported in the literature, that the source of the OC on the filters was mainly gaseous, semi-volatile organic compounds (SVOCs), which were present in an adsorption/desorption equilibrium that was dependent on possible SVOC emission episodes, relative humidity levels, gaseous oxidative reactions and the particulate matter deposit. A simple mathematical model is proposed to rationalise the observed mass deposits on the filters, together with a discussion of uncertainties affecting the measurements. The hypothesis preliminarily indicates the possible and previously unconsidered role of SVOCs on the initial film formation of soiling layers on the Aula paintings, and could bear implications for their monitoring in the preventive care of unvarnished oil paintings on canvas.

Springer

2023

A top-down estimation of subnational CO2 budget using a global high-resolution inverse model with data from regional surface networks

Nayagam, Lorna Raja; Maksyutov, Shamil; Oda, Tomohiro; Janardanan, Rajesh; Trisolino, Pamela; Zeng, Jiye; Kaiser, Johannes; Matsunaga, Tsuneo

Top-down approaches, such as atmospheric inversions, are a promising tool for evaluating emission estimates based on activity-data. In particular, there is a need to examine carbon budgets at subnational scales (e.g. state/province), since this is where the climate mitigation policies occur. In this study, the subnational scale anthropogenic CO2 emissions are estimated using a high-resolution global CO2 inverse model. The approach is distinctive with the use of continuous atmospheric measurements from regional/urban networks along with background monitoring data for the period 2015–2019 in global inversion. The measurements from several urban areas of the U.S., Europe and Japan, together with recent high-resolution emission inventories and data-driven flux datasets were utilized to estimate the fossil emissions across the urban areas of the world. By jointly optimizing fossil fuel and natural fluxes, the model is able to contribute additional information to the evaluation of province–scale emissions, provided that sufficient regional network observations are available. The fossil CO2 emission estimates over the U.S. states such as Indiana, Massachusetts, Connecticut, New York, Virginia and Maryland were found to have a reasonable agreement with the Environmental Protection Agency (EPA) inventory, and the model corrects the emissions substantially towards the EPA estimates for California and Indiana. The emission estimates over the United Kingdom, France and Germany are comparable with the regional inventory TNO–CAMS. We evaluated model estimates using independent aircraft observations, while comparison with the CarbonTracker model fluxes confirms ability to represent the biospheric fluxes. This study highlights the potential of the newly developed inverse modeling system to utilize the atmospheric data collected from the regional networks and other observation platforms for further enhancing the ability to perform top-down carbon budget assessment at subnational scales and support the monitoring and mitigation of greenhouse gas emissions.

2023

Publikasjon
År
Kategori